线应变:应变

应变(strain)

物体在外力作用下其中任意两质点间的距离发生的相对变化。应变包括线应变、切应变、一点附近的应变、微小应变和有限应变。

线应变    假设从物体(连续介质)中取一微元六面体素,变形后该体素的棱边发生伸长或缩短,体素棱边的相对伸长或缩短叫线应变(图1),以表示,规定相对伸长为正、相对缩短为负。线应变与位移的关系为为位移分量。

切应变    变形后微元六面体素相互垂直的两棱边夹角发生变化,夹角的增大或减小叫切应变或称工程切应变(图2),以表示,规定夹角增大为负、减小为正。对无旋切应变(数学切应变)以表示,两者的关系为。切应变互等,即,应变与位移间的关系可缩写成

一点附近的应变      变形体内无限靠近的两点连成的微小线段MN,变形后线段移动并伸长或缩短变成M’N’,把微小线段的相对伸长或缩短称一点附近的应变(图3)。可由该点的六个应变分量表示,即为微小线段的方向余弦。

微小应变     是指在大变形时变形全过程的各个阶段,在变形体素上再取新体素,使其各边平行于所取坐标轴,就可用该新体素尺寸为基准的微小应变结果,计算经微小时间后的应变,或称该阶段的应变增量,以ij,表示。也把应变增量称做大变形时以某一瞬间尺寸为基准的瞬时微小应变。应变增量与位移增量的关系为

有限应变    即工程上变形很大时的有限量应变。有限应变是按初始状态为基准的应变,一般情况下积r分应变增量得到的变形是不与体素最终形状相对应的,只有在主轴不变时积分结果才相当于对数应变为初始和终了尺寸。工程上计算有限应变为,它与对数应变的关系为

应变坐标变换    物体内一点的原坐标系(z,y,z)的六个应变分量过同一点的直角坐标系()间的坐标变换关系为:

以矩阵表示为:

式中新坐标与原坐标的方向余弦为:

 

相关推荐

最新

相关文章